Dam removal is the Holy Grail of river restoration

Kim Aarestrup, Kim Birnie-Gauvin, Niels Jepsen & Anders Koed

DTU Aqua National Institute of Aquatic Resources

Trickle to floodplain

Fundamental to life

Running waters matter

Rivers are intimately connected to the surroundings, $\underset{so rivers are what we make of them.$

General a vast increasing knowledge on freshwater biology and yet...

Article

More than one million barriers fragment **Europe's rivers**

https://	/doi.org/10.1038/s41586-020-3005
Receiv	red: 28 June 2020
Accep	ted: 26 October 2020
Publis	hed online: 16 December 2020
Che	eck for updates

Barbara Belletti^{1,20}, Carlos Garcia de Leaniz^{2⊡}, Joshua Jones², Simone Bizzi^{1,20}, Luca Börger², Gilles Segura^{3,4}, Andrea Castelletti¹, Wouter van de Bund⁵, Kim Aarestrup⁶, James Barry⁷, Kamila Belka⁸, Arjan Berkhuysen⁹, Kim Birnie-Gauvin⁶, Martina Bussettini¹⁰, Mauro Carolli¹¹, Sofia Consuegra², Eduardo Dopico¹², Tim Feierfeil¹³, Sara Fernández¹², Pao Fernandez Garrido⁹, Eva Garcia-Vazquez¹², Sara Garrido¹⁴, Guillermo Giannico¹⁵, Peter Gough⁹, Niels Jepsen⁶, Peter E. Jones², Paul Kemp¹⁶, Jim Kerr¹⁶, James King⁷, Małgorzata Łapińska^{8,17}, Gloria Lázaro¹⁴, Martyn C. Lucas¹⁰, Lucio Marcello¹⁰, Patrick Martin³, Phillip McGinnity^{20,21}, Jesse O'Hanley²², Rosa Olivo del Amo^{9,31}, Piotr Parasiewicz²³, Martin Pusch¹¹, Gonzalo Rincon²⁴, Cesar Rodriguez¹⁴, Joshua Royte²⁵, Claus Till Schneider²⁶, Jeroen S. Tummers¹⁸, Sergio Vallesi^{18,32}, Andrew Vowles¹⁶, Eric Verspoor¹⁹, Herman Wanningen⁹, Karl M. Wantzen^{27,33}, Laura Wildman²⁸ & Maciej Zalewski⁸

Rivers support some of Earth's richest biodiversity¹ and provide essential ecosystem services to society², but they are often fragmented by barriers to free flow³. In Europe, attempts to quantify river connectivity have been hampered by the absence of a harmonized barrier database. Here we show that there are at least 1.2 million instream barriers in 36 European countries (with a mean density of 0.74 barriers per kilometre), 68 per cent of which are structures less than two metres in height that are often overlooked. Standardized walkover surveys along 2,715 kilometres of stream length

SUSTAINABLE GOALS

Damremoval - Denmark

- Highest point: 171 m above sea level
- No natural barriers in the streams
- More than 90-98% of the streams are regulated
- Small, low gradient, but still loads of dams and weirs – same consequences

How do we measure status - indicator species

- Passage is both an upstream and downstream issue
- Smolts *and* adults must migrate downstream

Obstacle	Mean smolt loss (%)	A CONTRACTOR OF CONTRACTOR
Water mills (n = 5)	30	
Fish farms (n = 38)	42	
Hydropower stations (n = 7)	82	

Aarestrup et al. 2006 DFU report

Loss of GOOD habitat

- Loss of both vertical and horizontal habitat
- Can **only** be resinstated by removal

River (# of dams)	Total drop from source to outlet (m)	Summed drop from barriers (m)	Vertical habitat loss (%)	Total river length (km)	Summed ponded zones (km)	Horizonta I habitat Ioss (%)
Villestrup (6)	22	8.8	40	20.0	5.8	29
Omme (14)	75	17.7	24	55.0	11.35	21
Gudenaa (7)	69	24.9	36	149.0	_*	_*

Birnie-Gauvin et al. 2017 Aquatic Conservation

Case 1: Vilholt Dam (1866)

- Conflict since 1987
- Every argument was used to cancel/delay removal
- Removal almost 2 decades later, in 2008

Case 1: Vilholt Dam, local scale

Ponded zone – before

Case 1: Vilholt Dam

 Brown trout (*Salmo trutta*) density measured annually since 1987

 Overwhelming increase in density
both upstream and downstream of the dam

Year Birnie-Gauvin *et al*. 2017 *J. Environ. Manag.*

Case 2: River Kolding, river scale

Fig. 3. Modelled density of brown trout (*Salmo trutta*) young-of-the-year (YOY) per 100 m² of river before the small bypass (1992), before the pseudo-removal (2001, 2008) and after the pseudo-removal (2017) at downstream, regulated and reconnected sites (with 95% confidence intervals). A significant year × type interaction is present (p < 0.0001).

Year

Case 3: River Villestrup, output

River Villestrup

- 7 weirs total
- 6 removed

Birnie-Gauvin et al. 2018 River Res. Appl.

Case 3: River Villestrup

Conclusion

Prioritize Rivers – do better

Barrier removal has a direct benefit on over all river health

- Reaches far beyond the local site
- Can restore massive runs of fish

Barrier Removal is the Holy Grail of River management

DTU