



Adaptive Management of Barriers in European Rivers

A COLLABORATIVE PROJECT FOR GUIDANCE ON BARRIER LOCATION, REMOVAL AND MITIGATION IN EUROPE



Pao Fernandez Garrido Sandra Chevret Rosa Olivo del Amo















Source: www.sandre.eaufrance.fr/atlascatalogue/

Source: https://map.geo.admin.ch/

Globally, Europe is the continent with the smallest number of completely unfragmented Large River Systems - just three rivers in northwestern Russia. (Nilson, 2005)



### Hydropower boom in Europe

- 2020 target of 20% energy from renewables
- Pumped Hydro-Storage (PHS) important for attenuating solar and wind electricity
- Expected investment of €26
   billion in PHS alone between 2013 and 2020.



#### Resolving the connectivity challenge in EU

 Only half the surface waters of Europe have met the WFD target for 2015 of good ecological status

Most failures due to fragmentation & habitat loss





#### Adaptive Management of Barriers in European Rivers

More effective restoration of river connectivity in Europe requires a shift towards adaptive management of river barriers, one that maximizes benefits and minimizes impacts







#### AMBER PARTNERS









































8 Universities - Swansea, Durham, Highlands & Islands, Southampton, Cork (Ireland), Oviedo (Spain), Milan (Italy), DTU (Denmark).

> 4 Industrial partners - hydropower – EDF (France), IBK (Germany), Innogy (Germany), Sydkraft (Sweden)

4 NGOs (WFMF (Netherlands), WWF (Switzerland), CNSS (France), AEMS (Spain)

4 Government organisations - IFI (Ireland), ERCE (Poland), SSIFI (Poland), Joint Research Centre (Italy)

#### WP1: European Atlas of Stream Barriers



#### WP1: European Atlas of Stream Barriers

- 1. Information largely inaccessible to the majority of stakeholders
- Regional data, national data or no data at all
- 3. Not always free
- 4. <u>Barrier definition</u>- Stream connectivity is poorly defined and criteria for restoration are often arbitrary and taxon specific
- 5. <u>Data standarization</u>- Information on stream barriers is fragmentary, uses different data standards









Compile and merge barrier survey records available for each member state, and agree on a common methodology for reporting and classification to produce the **first inventory of stream barriers across Europe**.



#### WP1: European Atlas of Stream Barriers

Table 1. Key parameters that we propose to be compiled for the ATLAS.

| Key parameters | Definition                                                                                                                                         |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| ATLAS_ID       | New ID defined within AMBER                                                                                                                        |
| Source_ID      | ID of the source (national, regional) database                                                                                                     |
| URL            | Link to data source. It can be, e.g.: the web address of<br>the owner institution, the available web address of the<br>national/regional DB        |
| Country        | EU country or EU area, e.g. Balkans, Danube                                                                                                        |
| X_coord        | Latitude                                                                                                                                           |
| Y_coord        | Longitude                                                                                                                                          |
| River          | Name of the river                                                                                                                                  |
| Basin          | Name of river basin                                                                                                                                |
| Height         | Barrier height (m), i.e. the vertical distance between the lowest point on the crest of the barrier and the lowest point in the original streambed |
| Туре           | Dam, weir, spillway, etc.                                                                                                                          |
| Year           | Date of building (end)                                                                                                                             |

#### WP2: Impacts of Barriers





#### **WP3: Decision Tools**







#### WP4: 6 Demonstrative Projects





#### WP4: CASE 1 - Nalón River - Planned Caleao Dam





#### WP4: CASE 2- Allier River - Poutès Dam





#### WP4: CASE 3- Munster Blackwater River- Clondulane Weir





#### WP4: CASE 4- River Garry (Scotland) - Loch Quoich Dam





#### WP4: CASE 5-River Vistula - Włocławek Hydropower Dam





# WP4: CASE 6 - Guadalhorce- Various dams including hydroelectric





### WP5: Communication, Dissemination and Public Engagement through Citizen Science





### WP5: Communication, Dissemination and Public Engagement through Citizen Science



Website

Workshops

Newsletters

Social Media

AMBER network

Citizen Science App

Educational materials



#### CONCLUSIONS





## WORLD FISH MIGRATION DAY 21<sup>st</sup> April 2018

www.worldfishmigrationday.com





About

Events

Sponsor/Support

egister event

lours

wnloads

Contact

ct Accou



#### Going global

#### Creating awareness on a global scale

In 2016, we reached 177 more events than in 2014. The majority of the events were in Europe (228) and the USA (103), but there were also events from other countries; Mongolia, Gambia, Iceland, Ecuador and Papua New Guinea to name a few. Our goals for 2018 are to increase the impact and double the number of events to involve at least 75 countries around the globe, particularly increasing the number of events in developing areas in Africa, South America and Asia, where a major expansion of hydropower and dam development is proposed. It is critical that citizens, companies, governments, financiers and other organizations in these areas are well informed about migratory fish and the impacts they face.

450 Events
63 countries
82.000 visitors to events
2,000 organizations involved
70.000.000 people reached worldwide
+15.000.000 people reached on social media





















# Thank you



Pao Fernández Garrido pao@fishmigration.org



